Memristor Models for Machine Learning

نویسندگان

  • Juan Pablo Carbajal
  • Joni Dambre
  • Michiel Hermans
  • Benjamin Schrauwen
چکیده

In the quest for alternatives to traditional complementary metal-oxide-semiconductor, it is being suggested that digital computing efficiency and power can be improved by matching the precision to the application. Many applications do not need the high precision that is being used today. In particular, large gains in area and power efficiency could be achieved by dedicated analog realizations of approximate computing engines. In this work we explore the use of memristor networks for analog approximate computation, based on a machine learning framework called reservoir computing. Most experimental investigations on the dynamics of memristors focus on their nonvolatile behavior. Hence, the volatility that is present in the developed technologies is usually unwanted and is not included in simulation models. In contrast, in reservoir computing, volatility is not only desirable but necessary. Therefore, in this work, we propose two different ways to incorporate it into memristor simulation models. The first is an extension of Strukov's model, and the second is an equivalent Wiener model approximation. We analyze and compare the dynamical properties of these models and discuss their implications for the memory and the nonlinear processing capacity of memristor networks. Our results indicate that device variability, increasingly causing problems in traditional computer design, is an asset in the context of reservoir computing. We conclude that although both models could lead to useful memristor-based reservoir computing systems, their computational performance will differ. Therefore, experimental modeling research is required for the development of accurate volatile memristor models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hebbian Learning Rules with Memristors

Machine learning algorithms often rely on continuous updating of large matrices of “synaptic weights” by local “Hebbian” rules. These rules generally involve a multiplication term, which poses a challenge for implementing large scale hardware for machine learning. In this paper, a method for performing these multiplications using memristor-based arrays is proposed, based on the fact that approx...

متن کامل

A Compact CMOS Memristor Emulator Circuit and its Applications

Conceptual memristors have recently gathered wider interest due to their diverse application in non-von Neumann computing, machine learning, neuromorphic computing, and chaotic circuits. We introduce a compact CMOS circuit that emulates idealized memristor characteristics and can bridge the gap between concepts to chip-scale realization by transcending device challenges. The CMOS memristor circ...

متن کامل

Analysis of a simple object oriented simulation of STDP in memristor synapse arrays for potential use in event-driven contrastive divergence

6 Memristors are electrical devices whose conductance can be modulated by the 7 charge and voltage flux through the two elements. Previous work has shown that 8 memristors are good models of synapses, even reproducing learning behavior 9 such as spike-time dependent plasticity (STDP). As such, there is widespread 10 interest in understanding how large networks of memristor synapses might be 11 ...

متن کامل

Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...

متن کامل

Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 27 3  شماره 

صفحات  -

تاریخ انتشار 2015